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The Cg, cage has played an important role in the development
of endohedral fullerene chemistry. In 1991 Smalley and co-workers
observed that La@Cg,, unlike La@Cg and La@Cy4, had good
solubility in organic solvents and high stability." Subsequently,
endohedral fullerenes with Cg, cages have become particularly
numerous and have been subject to external modification through
addition reactions.> Nine isomers (three C, isomers, three C,
isomers, two Cs, isomers, and one C,, isomer) of the Cg, cage obey
the isolated pentagon rule (IPR), which requires that each of the
twelve pentagons in a fullerene be surrounded by hexagons.® It
has been established that the major and minor isomers of La@Cyg,
have IPR-obeying cage structures with Cy,* and C,> symmetry,
respectively, and the C,, structure appears to be established for a
number of other endohedrals of the M@Csg, type (M =Y, Ca, etc.).’
The structures of two of the three known isomers of Er, @Cg, have
been crystallographically characterized and shown to have the IPR-
obeying structures Er,@C(6)-Cs,’ and Er, @ C3,(8)-Cg,.®

Endohedral fullerenes containing the trimetallic nitride (TN) M3N
unit are particularly important because they can be obtained in
unusually high yields.” While the structures of several TN endohe-
dral fullerenes have been reported,” ' no structural data for
Mi;N@Cg, have been available. Poblet and co-workers have
predicted that M3N @Cg, will not obey the IPR because of the lack
of an appropriately large gap in the molecular orbital energies in
the hexa-anion of the empty cage.'* Computational studies by Popov
and Dunsch suggested that the structures M3N@ C,,(39705)-Cs, and
M;N@ C(39663)-Cg, are the most probable isomers for the Cg, TN
endohedrals."”

A sample of GdsN@ Cy(39663)-Cg,was prepared in an electric
arc-discharge reactor by vaporizing graphite rods containing a
mixture of GdyO3; and graphite powder in a ~400 Torr He/N,
atmosphere as outlined previously.'® The xylene extract from the
raw soot was passed through a cyclopentadiene-functionalized
Merrifield peptide resin to remove the empty-cage fullerenes. The
higher order species were separated via HPLC. The third fraction
contained Gd;N@ C,(39663)-Cg,.'® The HPLC chromatogram,
negative ion MALDI-TOF MS spectrum, and the UV —vis absorp-
tion spectrum of the Gd;N@ C(39663)-Cs, are reproduced in the
Supporting Information.

Black parallelepipeds of Gd;N@ C,(39663)-Cg, *Ni"(OEP) - 2(CsHe)
were obtained by diffusion of a benzene solution of the endohedral
fullerene into a benzene solution of Ni"(OEP) and utilized in the crystal
structure determination.'”
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Figure 1. A view of the structure of GdsN@Cy(39663)-
Cs2*Ni''(OEP)*2C¢Hs with 30% thermal contours. The pair of fused
pentagons is highlighted in purple. Only the major site for the Gds group
is shown. For clarity, the solvated molecules of benzene have been omitted.

Figure 1 shows a drawing of the egg-shaped Gd;N@ C(39663)-
Cs, molecule, which is nestled within the eight ethyl groups of the
Ni"(OEP) molecule. The carbon cage in Gd;N @ C,(39663)-Cy, does
not obey the isolated pentagon rule. The ring spiral for this carbon
cage is 1, 2, 11, 13, 17, 19, 26, 31, 33, 35, 38, 43. The one fused
pentagon pair is highlighted in Figure 1 in purple. For a Cg, there
are the 9 isomers that conform to the IPR and 39709 isomeric
structures that do not conform to the IPR if only pentagons and
hexagons are found within the carbon framework.> The structure
found here is one of the two previously predicted to be stable for
a Cg, cage bearing a 6~ charge.'”

The fullerene cage in Gd;sN@ C(39663)-Cg, closely resembles
the cage found for the most prevalent isomer of M3N@Cg4, which
is MsN@C,(51365)-Cg4 (M = Gd, Tb, Tm).'®'® A comparison of
the shapes of these two fullerenes is presented in Figure 2. Both
cages have an egg shape with mirror symmetry and a single location
where two pentagons abut. In both cases the mirror plane of the
fullerene is positioned perpendicular to the C—C bond that connects
the two pentagonal rings.

There is some disorder in the structure. Gdl, Gd2, and Gd3
constitute the major site for this group with 0.84, 0.67, and 0.70
fractional occupancy, respectively. The Gd—N distances are
2.152(5), 2.094(5), and 2.077(5) A for Gdl, Gd2, and Gd3,
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Figure 2. A comparison of the structures of the fullerene cages in
Gd3;N@C,(39663)-Cs, (bottom with the fused pentagon pair highlighted in
purple) and GdsN@C(51365)-Cgs (top with the fused pentagon pair
highlighted in red). The noncrystallographic mirror plane in each case lies
parallel to the page.

respectively. The GdsN unit is planar at the major site. The sum of
the three Gd—N—Gd angles is 359.6°. There are an additional 16
Gd sites with occupancies ranging from 0.09 to 0.02. The carbon
cage also displays disorder with two orientations for the cage.

Gdl is situated within the fold of the pentalene unit formed by
the fused pentagon pair. Within that unit the Gd—C distances are
shortest at the fold (Gd1—C78, 2.476(10), Gd1—C82, 2.484(10)
A) and longer for the four adjacent carbon atoms, which range from
2.486(9) to 2.554(10) A. The Gd1—C78 and Gd1—C82 distances
are comparable to the Gd—C distances (2.470(15) and 2.479(16))
in Gd;N@C(51365)-Cgy."” The positioning of Gd1 near the fused
pentagon pair is similar to that of the Gd, Tb, and Tm ions in
M;N@Cy(51365)-Csq and the Sc ions within the three pentalene
units of Sc;N@D3,(6140)-Cgg.'''#'° For comparison, there is a
significant body of data available for coordination of organometallic
groups to the inner face of pentalene and substituted pentalenes.>®

Within the family of TN fullerenes, crystallographic data show
that ScsN@D3,(5)-Cr,'° M3N@I,-Cgg (M = Sc, Gd, Tb),”"?
M3N@D5h-Cgo (M = SC, Tb),]z’]3 Tb3N@D3-C35, 13 and Tb3N@D2(35)-
Css'? obey the IPR, but ScsN@D;(6140)-Ces,' ' GdsN @ C,(39663)-
Cs, and M3sN@C,(51365)-Cgs (M = Gd, Tb, Tm)'®!° do not.
Additional exceptions to the IPR rule that have been reported
include:  Sc;N@C,,(7854)-Cr0,2"  DyScoN@ Cy(17490)Cre,%2
Sc,@Ce6,”> ScaCr@C5,(6073)-Ces,”* La,@D(10611)-Cy,,>> and
La@C7,.%° With this growing list of exceptions, the IPR indeed
appears to be more a suggestion than a rule for endohedral
fullerenes.
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